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Abstract— For Bayesian combinatorial auctions, we
present a general framework for approximately reducing the
mechanism design problem for multiple buyers to the mech-
anism design problem for each individual buyer. Our frame-
work can be applied to any setting which roughly satisfies
the following assumptions: (i) the buyer’s types must be
distributed independently (not necessarily identically), (ii) the
objective function must be linearly separable over the set
of buyers, and (iii) the supply constraints must be the only
constraints involving more than one buyer. Our framework
is general in the sense that it makes no explicit assumption
about any of the following: (i) the buyer’s valuations (e.g.,
submodular, additive, etc), (ii) The distribution of types for
each buyer, and (iii) the other constraints involving individual
buyers (e.g., budget constraints, etc).

We present two generic n-buyer mechanisms that use 1-
buyer mechanisms as black boxes. Assuming that we have
an α-approximate 1-buyer mechanism for each buyer1 and
assuming that no buyer ever needs more than 1

k
of all copies

of each item for some integer k ≥ 1, then our generic n-
buyer mechanisms are γk · α-approximation of the optimal
n-buyer mechanism, in which γk is a constant which is at
least 1 − 1√

k+3
. Observe that γk is at least 1

2
(for k = 1)

and approaches 1 as k increases. As a byproduct of our con-
struction, we improve a generalization of prophet inequalities.
Furthermore, as applications of our main theorem, we improve
several results from the literature.

1. INTRODUCTION

The main challenge of stochastic optimization arises

from the fact that all instances in the support of the dis-

tribution are relevant for the objective and this support is

exponentially big in the size of problem. This paper ad-

dresses this challenge by giving a general decomposition

technique for assignment problems on independently

distributed inputs where the objective is linearly separa-

ble over the inputs. The main challenge faced by such a

decomposition approach is that the feasibility constraint

of an assignment problem introduces correlation in the

Part of this work was done when the author was visiting Microsoft
Research, New England. This work was partially supported by the
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1Note that we can use different 1-buyer mechanisms to accommo-
date different classes of buyers.

outcome of the optimal solution. In mechanism design

problems, such constraints are usually the supply con-

straints. For example a revenue maximizing seller with

unlimited supply who is facing independent buyers can

decompose the problem over the buyers and optimize

for each buyer independently. However, in the presence

of supply constraints, a direct decomposition is not

possible. Our decomposition technique can be roughly

described as the following. (i) Construct a mechanism

that satisfies the supply constraints only in expectation

(ex-ante). The optimization problem for constructing

such a mechanism can be fully decomposed over the

set of buyers. (ii) Convert the mechanism from the

previous step to another mechanism that satisfies the

supply constraint at every instance.

We restrict our discussion to Bayesian combinatorial

auctions. We are looking for mechanisms for allocating

a set of heterogenous items with limited supply to a

set of buyers in order to maximize the expected value

of a certain objective function that is linearly separable

over the buyers (e.g., welfare, revenue, etc). The buy-

ers’ types are distributed independently according to a

publicly know prior. We defer the formal statement of

our assumptions to section 2.

There are two challenges in designing mechanisms

for multiple buyers:

(I) The decisions made by the mechanism for dif-

ferent buyers should be coordinated because of

supply constraints.

(II) The decisions made by the mechanism for each

buyer has to be optimal (or approximately opti-

mal).

The first difficulty is due to the fact that the desired

mechanism has to be optimized over the joint type space

of all buyers, the size of which grows exponentially in

the number of buyers. The second difficulty is usually

due to the incentive compatibility (IC) constraints, spe-

cially in multi-dimensional settings where these con-

straints cannot be encoded compactly. In this paper, we

mostly address the first difficulty by providing a frame-



work for approximately decomposing and reducing the

mechanism design problem for multiple buyer to the

mechanism design problem for individual buyers.
Our framework can be summarized as follows. We

start by relaxing the supply constraints (i.e., the con-

straints specifying that the total number of allocated

copies of each item cannot exceed the supply of that

item) to hold only in expectation. In other words, we

consider the set of mechanisms with the property that

for each item only the ex-ante expected number of

allocated copies does not exceed the supply. We show

that the optimal mechanism for the relaxed problem

can be constructed by independently running n single

buyer mechanisms, where each single buyer mechanism

is optimal for the corresponding buyer among all single

buyer mechanisms that are restricted not to allocate each

item with an ex-ante expected probability exceeding a

certain threshold specific to each item. In particular,

if we can construct and α-approximate single buyer

mechanism for each buyer, then we can combine them

to get an α-approximate mechanism for all buyers. We

then present two methods for converting this mechanism

to a mechanism that meets the supply constraints at

every instance, while losing only a small constant factor

in the approximation. In the first method, we serve

buyers sequentially by running, for each buyer, the cor-

responding single buyer mechanism from the previous

step. However, we sometimes randomly preclude some

of the items from being offered to some buyers in

order to ensure that buyers that are served later also

get a chance of being offered with those items. We do

this in such a way that would ensure that the ex-ante

expected probability of preclusion is equalized over all

buyers, and therefore simultaneously minimized for all

buyers. In the second method, we run all of the single

buyer mechanisms simultaneously and then modify the

outcomes by deallocating some copies of the over-

allocated items at random while adjusting the payments

respectively. We do this in such a way that would ensure

the ex-ante expected probability of deallocation for each

item is equalized among all copies of that item and

therefore simultaneously minimized for all buyers.
We also introduce a toy problem, the magician’s

problem, along with a near optimal solution for it. The

solution of this problem is used as the main ingredient

for converting mechanisms for the relaxed problem to

mechanisms for the original problem. It also yields

improved generalized prophet inequalities through a

direct reduction.
As applications of our general framework, we con-

struct improved mechanisms for several settings from

the literature2. For each setting we only construct a

2Only one application is included in the conference version of the
paper.

single buyer mechanism that satisfies the requirements

of our framework, and then our generic construction can

be applied to construct a mechanism for multiple buyers,

using the single buyer mechanism as the building block.

Some of the proofs and other results are omitted from

the current version of the paper due to space constraints,

but are available in the full version.

1.1. Related Work

In single dimensional settings, most of the related

works form the CS literature are either focused on

approximating the VCG mechanism for welfare max-

imization, or approximating the Myerson’s mecha-

nism [16] for revenue maximization (e.g., [5], [2], [4],

[14], [9], [6], [17]). Most of them consider mechanisms

that have simple implementation and are computa-

tionally efficient. For welfare maximization in single

dimensional settings, [13] gives a blackbox reduction

from mechanism design to algorithmic design.

In multidimensional setting, for welfare maximiza-

tion, [12] presents a blackbox reduction from mecha-

nism design to algorithm design which subsumes the

earlier work of [13]. For revenue maximization, [7]

presents several sequential posted pricing mechanisms

for various settings with different types of matroid

feasibility constraints. These mechanisms have simple

implementation and approximate the revenue of the

optimal mechanism. For a special form of combinatorial

auctions with hard budget constraints, [3] presents an

all pay BIC mechanism and a sequential posted pricing

mechanism. [8] also considers various settings with hard

budget constraints.

Prophet inequalities have been extensively studied

in the past (e.g. [15]). The best known bound for the

generalization to sum of k choices was 1 − O(
√
ln k√
k
)

by [11] which we improve to 1− 1√
k+3

. Note that the

current bound is not only asymptotically better than the

previous bound, but is also tight for k = 1, where as

the previous bound would be useful only for large k.

2. MODEL & OVERVIEW OF APPROACH

Model: We consider mechanisms for selling m in-

divisible heterogenous items to n buyers where there

are kj copies of each item j ∈ [m]. All the relevant

private information of each buyer i ∈ [n] is represented

by her type ti ∈ Ti where Ti is the type space

of buyer i. The profile of types t = (t1, · · · , tn) is

distributed according to a publicly known prior D. We

are restricted to mechanisms from a given space of

mechanisms M. For a mechanism M, we use XM
ij (t)

and PM
i (t) to denote the random variables3 respectively

3Note that these random variables are often correlated. Furthermore,
if M is a deterministic mechanism then for any given t these variables
take deterministic values as a function of t.



for allocation of item j to buyer i and payment of

buyer i, when the profile of types is t. We are looking

for mechanisms that maximize the expected value of a

given objective function W (t, x, p) where t, x, and p
respectively represent the types, the allocations, and the

payments of all buyers. Formally, we are looking for

a mechanism M ∈ M that (approximately) maximizes

Et∼D[W (t,XM(t), PM(t))].
Assumptions: We make the following assumptions:

(A1) The buyers’ types must be distributed indepen-

dently, i.e., D = D1×· · ·×Dn must be a product

distribution.

(A2) The objective function must be linearly sep-

arable over the buyers, i.e., W (t, x, p) =∑
i Wi(ti, xi, pi) where ti, xi, and pi respectively

represent the type, the allocations, and the pay-

ment of buyer i.
(A3) No buyer must ever need more than one copy of

each item, i.e., XM
ij (t) ∈ {0, 1} for all t.4

(A4) M must be restricted to (Bayesian) incentive com-

patible mechanisms. By direct revelation principle

this assumption is without loss of generality.

(A5) M must be a convex space. In other words, any

convex combination of any two mechanisms from

M must itself be a mechanism in M. A convex

combination of two mechanisms M,M′ ∈ M is

another mechanism M′′ which simply runs M
with probability α and runs M′ with probability

1 − α, for some α ∈ [0, 1]. In particular, if M is

restricted to deterministic mechanisms, then it is

not convex. 5.

(A6) The set of constraints that specify M must be

decomposable to supply constraints and single

buyer constraints. Note that IC constraints, budget

constraints, etc., are all single buyer constraints.

We define this assumption formally as follows.

For any mechanism M, let [[M]]i be the sin-

gle buyer mechanism perceived by buyer i, as

if the other buyers are part of the mechanism.

Let Mi = {[[M]]i|M ∈ M} be the space of

single buyer mechanisms perceived by buyer i
resulting from mechanisms in M. We require that

for any mechanism M, if M satisfies the supply

constraints and also [[M]]i ∈Mi (for all i ∈ [n]),
then it must be that M∈M.

We shall clarify the last assumption by giving an

example. Suppose M is the space of all truthful buyer

specific item pricing mechanisms, then M satisfies the

last assumption. On the other hand, if M is the space

4This assumption is not necessary and can be lifted as explained
in the full paper.

5As an example of a randomized space of mechanisms without
this property, consider the space of mechanisms where the expected
payment of every type must be either less than $2 or more than $4

of mechanisms that offer the same set of prices to

every buyer, then it does not satisfy the decomposability

assumption.

Formally, the problem we are looking at is to find

a mechanism M that is a solution to the following

program:

maximize:
∑
i

Et∼D[Wi(ti, X
M
i (t), PM

i (t))]

(P )

subject to:

∀t ∈ T, ∀j ∈ [m] :
∑
i

XM
ij (t) ≤ kj (S)

∀i ∈ [n] : [[M]]i ∈Mi (M )

Summary of Approach: We now present an overview

of our general framework for constructing approxi-

mately optimal mechanisms for the above program. We

start by relaxing the supply constraints to hold only

in expectation. We show that the optimal mechanism

for the relaxed problem can be constructed by combin-

ing n independent single buyer mechanisms. We then

present two approaches for converting the mechanism

constructed in the previous step to a mechanism for the

original problem. Each step is explained in more details

next.

The problem is initially relaxed by requiring the

supply constraints to hold only in expectation. In other

words, the constraints (S) are replaced with the follow-

ing constraints:

∀j ∈ [m] : Et∼D[
∑
i

XM
ij (t)] ≤ kj (S′)

We show that an optimal mechanism for the relaxed

problem can be constructed by combining n indepen-

dent single buyer mechanisms. We shall first present the

following definition.

Definition 1 (Primary Mechanism/Primary Benchmark).
A primary mechanism for buyer i is a single buyer
mechanism Mi that allows specifying an upper bound
on the expected probability of allocating each item. For
every q̄i ∈ [0, 1]m,Mi(q̄i) is a single buyer mechanism
in Mi for which the ex-ante expected probability of
allocating a copy of item j to buyer i is at most q̄ij .
The optimal primary mechanism is the one that has the
highest expected objective value.

A primary benchmark for buyer i is a function
Ri : [0, 1]m → R+ that returns an upper bound on
the expected objective value of the optimal primary
mechanism for buyer i. If Ri is the optimal primary
benchmark for buyer i then Ri(q̄i) is exactly equal
to the expected objective value of the optimal primary
mechanism subject to q̄i.



We show that an optimal mechanism for the relaxed

problem can be constructed from n independent op-

timal primary mechanisms. Let M∗ be any optimal

mechanism for the relaxed problem and let q∗ij =

Et∼D[XM∗
ij (t)] be the expected probability that M∗

allocates a copy of item j to buyer i. LetMi denote the

optimal primary for each buyer i. In section 4, we prove

that the mechanism that runs Mi(q
∗
i ) independently

for buyer i has the same expected objective value as

M∗. Therefore, if we can construct the optimal primary

mechanism for each buyer, then we can construct an

optimal mechanism for the relaxed problem by simply

usingMi(q
∗
i ) independently for each buyer i, assuming

that we know how to compute the q∗ij . We will show that

q∗ij is the optimal assignment for the following program

in which Ri is the optimal primary benchmark for buyer

i:

maximize:
∑
i

Ri(q̄i) (CPR)

∀j ∈ [m] :
∑
i

q̄ij ≤ kj

∀i ∈ [n], ∀j ∈ [m] : q̄ij ∈ [0, 1]

In particular, in section 4, we prove that the optimal

primary benchmarks Ri(·) are always concave, and

therefore the above program is a convex program.

Consequently, this program can be efficiently solved

to compute q∗ij . Note that usually each function Ri is

itself the optimal objective value of a linear or convex

program, and does not have a closed form; in that

case, all the corresponding linear/convex programs can

be merged into one. So far, we have explained how

the problem of constructing an optimal mechanism for

the relaxed problem can be reduced to the problem of

constructing the optimal primary mechanisms/primary

benchmarks. Next, we explain how to convert it to a

mechanism for the original problem.

We now present two approaches for converting a

mechanism for the relaxed problem to a mechanism for

the original problem, while losing only a small constant

fraction of the expected objective value. Let M be

the mechanism constructed in the previous step, which

uses Mi(q̄i) independently for each buyer i. Since M
satisfies the supply constraints only in expectation, it

most likely violates those constraints in some instances.

We propose two separate approaches for dealing with

this issue, each one yielding a generic mechanism for

the original (non-relaxed) problem. The following is a

high level description of these two generic mechanisms:

1) Pre-Rounding: This mechanism serves buyers se-

quentially in an arbitrary order. For each buyer i,
it runsMi(q̄

′
i) in which q̄′i is the same as q̄i except

that some of its entries are set to 0 as explained

next. The outcome of Mi(q̄
′
i) is taken as the final

outcome for buyer i. Setting q̄′ij to 0 effectively

precludes Mi(q̄
′
i) from allocating a copy of item

j to buyer i. The supply constraints are enforced by

setting q̄′ij to 0 for any item j that is sold out prior

to serving buyer i. Moreover, for each item, the

mechanism tries to minimize simultaneously for all

buyers the expected probability of preclusion by

equalizing this expected probability for all buyers.

Effectively, the mechanism sometimes precludes

some items from being offered to earlier buyers in

order to make sure that later buyers get the same

chance of being offered with those items. Note

that, for any given pair of buyer and item, we only

care about the expected probability of preclusion

where the expectation is taken over the types

of other buyers. In particular, an item might be

precluded from the current buyer with probability 1
if certain scenarios of outcomes have been realized

for buyers served prior to the current buyer. We

show that if there are at least k copies of each

item then the expected probability of preclusion of

each item for each buyer is no more than 1√
k+3

.

2) Post-Rounding: This mechanism runs Mi(q̄i) for

each buyer i independently and then modifies the

outcomes by deallocating some of the items at

random to ensure that the supply constraints are

met at every instance. This is done in such a way

that would minimize the expected probability of

deallocation observed by each buyer by equalizing

this probability over all copies of each item. The

payments are also scaled down accordingly by the

same probability. Note that, for any given pair of

buyer and item, we only care about the expected

probability of deallocation, where the expectation

is taken over the types of other buyers. In particu-

lar, a buyer who faces a small expected probability

of deallocation could still face a deallocation prob-

ability of 1 for some items when certain profiles

of types are reported by other buyers. We show

that if there are at least k copies of each item,

then the expected probability of deallocation is no

more than 1√
k+3

for each copy.

In section 4 we explain the above mechanisms in

more details and present some technical assumptions

that are sufficient to ensure that they retain at least a

1 − 1√
k+3

fraction of the expected objective value of

M.
Throughout the above discussion, we have assumed

that we can construct the optimal primary mechanisms

and the optimal primary benchmarks. However, it is

likely that we can only construct an approximation of

them. Suppose for each buyer i, we only have an α-

approximate primary mechanism and a corresponding



concave primary benchmark Ri (i.e., the expected ob-

jective value of Mi(q̄i) is at least Ri(q̄i) for every

q̄i ∈ [0, 1]m). Then we can still used Mi and Ri in the

above construction, but the final approximation factor

will be multiplied by α.

Main Result: The main result of this paper can be

summarized in the following informal theorem.

Theorem 1 (Market Expansion). Suppose for each
buyer i ∈ [n], we have an α-approximate primary
mechanism Mi and a corresponding concave primary
benchmark Ri. Then, with some further assumptions
(explained later), we can efficiently construct a mech-
anism M ∈ M, using the primary mechanisms as
building blocks, such that the expected objective value
ofM is at least γk ·α-fraction of the expected objective
value of the optimal mechanism, where k = minj kj and
γk is a constant which is at least 1− 1√

k+3
.

In order to explain our construction in more details,

we shall first describe the magician’s problem and

its solution, which is used in equalizing the expected

probabilities of preclusion/deallocation over all buyers.

3. THE MAGICIAN’S PROBLEM

In this section, we present an abstract online stochas-

tic toy problem and a near-optimal solution for it.

The solution to this problem is the main ingredient

for combining single buyer mechanisms to construct

mechanisms for multiple buyers. The solution to this

problem is used to prove a generalized prophet inequal-

ity. Furthermore, it has applications in online stochastic

optimization6

Definition 2 (The Magician’s Problem). A magician is
presented with a series of boxes one by one. There is
a prize hidden in one of the boxes. He has k magic
wands that can be used to open the boxes. On each box
is written a probability. If a wand is used on a box,
it opens, but with at most the written probability the
wand breaks. Let qi denote this probability for the ith

box. The magician wishes to maximize the probability
of obtaining the prize, but unfortunately the sequence
of boxes, the written probabilities, and the box in which
the prize is hidden are arranged by a villain, and the
magician has no prior information about them (not even
the number of boxes). However, it is given that

∑
i qi ≤

k, and that the villain cannot make any changes once
the process has started.

The magician could fail to open a box either because

he might choose to skip the box or because he might run

out of magic wands before coming to the box. Note that

once the magician fixes his strategy, the best strategy

6Refer to the full version for more details.

for the villain is to put the prize in the box that has

the lowest ex-ante expected probability of being opened,

based on the magician’s strategy. Therefore, in order for

the magician to obtain the prize with a probability of at

least γ, he has to devise a strategy that guarantees an ex-

ante expected probability of at least γ for opening each

box. Note that the nature of the prize or even whether

there is actually a prize does not affect the problem. It is

easy to show the following strategy ensures an ex-ante

expected probability of at least 1
4 for opening each box:

For each box randomize and use a wand with probability
1
2 . But can we do better? Next we present an algorithm

that takes a parameter γ and tries to ensure a minimum

ex-ante expected probability of γ for opening each box.

In Theorem 2, we show that for any γ ≤ 1− 1√
k+3

this

algorithm indeed guarantees that the ex-ante expected

probability of opening each box is at least γ.

Algorithm 1 (γ-Conservative Magician). The magi-
cian constructs a strategy table yji using the dynamic
programs given below. yji specifies the probability with
which the magician should choose to open the ith box if
j wands have been broken prior to seeing the ith box.
So if yji = 0 or yji = 1, then the magician makes a
deterministic decision, otherwise he should randomize
and open the ith box with probability yji . We use Yi

as the indicator random variable which is 1 iff the
magician chooses to open the ith box. The strategy table
can be computed using the following dynamic programs
(note that γ is a parameter that is given):

yji =

⎧⎪⎨
⎪⎩

1 i≥1,0≤j<θi

(γ−φ
θi−1

i )/(φ
θi
i −φ

θi−1

i ) i≥1,j=θi

0 otherwise.

(DP.y)

θi = min{j|φj
i ≥ γ} (DP.θ)

φj
i =

⎧⎪⎨
⎪⎩

1 i=1,j≥0

yj
i−1qi−1φ

j−1
i−1+(1−yj

i−1qi−1)φ
j
i−1 i≥2,j≥0

0 otherwise.

(DP.φ)

Note that computing yji only requires the knowledge of
q1, · · · , qi−1, so computing yji and making a decision
about the ith box can be done even before seeing the
ith box itself.

Interpretation of γ-Conservative Magician(Alg. 1):
The main idea of the algorithm is the following: After

seeing the first i − 1 boxes and prior to the arrival of

the ith box, the magician computes a threshold θi as

follows. θi is the smallest integer such that the ex-ante

expected probability of having lost at most θi wands,

on the first i− 1 boxes, is at least γ. In other words, if

Si is the random variable that represents the number of

magic wands broken prior to seeing the ith box, then θi



is chosen to be the smallest integer such that Pr[Si ≤
θi] ≥ γ. Observe that if the magician always opens the

ith box when the number of wands broken so far is no

more than θi, and otherwise discards the box, then he

can guarantee an ex-ante probability of at least γ for

opening the ith box. Furthermore, if Pr[Si ≤ θi] >
γ, i.e. if the inequality is strict, then in the event of

having broken exactly θi wands prior to the ith box,

the magician randomizes and opens the ith box with

a probability strictly less than 1, which is just enough

to ensure that the total ex-ante expected probability of

opening the ith box is at least γ. It can be verified

that φj
i , as defined by the dynamic program, is a lower

bound on Pr[Si ≤ j]. In fact, if q1, · · · , qi−1 are the

exact probabilities of breaking a wand for each of the

first i − 1 boxes, then Pr[Si ≤ j] = φj
i . In order to

prove that the above strategy ensures that each box is

opened with an ex-ante expected probability of at least

γ, we need to show that yji = 0 for all j ≥ k and all

i. i.e., we need to show that the strategy table of the

magician does not instruct him to open a box if he has

broken all of his k wands. In Theorem 2 we present

a sufficient condition on γ that ensures yji = 0 for all

j ≥ k and all i.

Theorem 2 (γ-Conservative Magician). For any γ ≤
1 − 1√

k+3
, a γ-conservative magician guarantees that

each box is opened with an ex-ante expected probability
at least γ. Furthermore, if qi are the exact probabilities
of breaking a wand, then the γ-conservative magician
opens each box with an ex-ante expected probability
exactly γ7

Definition 3 (γk). We define γk to be the largest
probability such that for any instance of the magician’s
problem with k′ wands, where k′ ≥ k, a γk-conservative
magician with k′ wands can guarantee that each box
is opened with an ex-ante expected probability at least
γk. By Theorem 2, we know that γk must be at least
1− 1√

k+3
because for any k′ ≥ k obviously 1− 1√

k+3
≤

1− 1√
k′+3

.

Observe that γk is a non-decreasing function in k
which is at least 1

2 (when k = 1) and approaches 1 as

k gets larger. The next theorem shows that the lower

bound of 1− 1√
k+3

on γk is almost tight.

Theorem 3 (Optimal Magician). For any ε > 0, it is not
possible to guarantee an ex-ante expected probability
of at least 1 − kk

ekk!
+ ε for opening each box(i.e., no

magician can guarantee it). Note that 1 − kk

ekk!
≈ 1 −

7In particular the fact that the probability of breaking a wand for
the ith box is exactly qi conditioned on any sequence of prior events
implies that for each box the event of breaking a wand has to be
independent of the sequence of past events and independent of other
boxes.

1√
2πk

.

Next, we prove a generalization of prophet inequali-

ties by a direct reduction to the magician’s problem.

Definition 4 (Sum of k-Choices). A sequence of n non-
negative random variables V1, · · · , Vn are presented to
a gambler one by one in an arbitrary order. The gambler
knows n and the distribution of each random variable in
advance but not the order in which they are presented.
Upon being presented with the random variable Vi, the
gambler observes the actual draw of Vi and he has to
decide whether to keep it or to discard. This decision
cannot be changed later. The gambler must select k of
the random draws from the sequence. His objective is
to maximize the sum of the selected draws. The prophet
knows all the actual draws in advance, so he chooses the
k highest draws. We assume that the order in which the
random variables are presented to the gambler is fixed
in advance and does not change during the process.

It was shown in [11] that there is a strategy for the

gambler that guarantees at least 1−O(
√
ln k√
k
) fraction of

the payoff of the prophet, in expectation, by using a non-

decreasing sequence of k stopping rules (thresholds)
8. Next, we construct a gambler that obtains at least

γk fraction of the prophet’s payoff, in expectation, by

using a γk-conservative magician as a black box. Note

that γk ≥ 1 − 1√
k+3

. This gambler uses only a single

threshold. However, he may skip some of the random

variables at random.

Theorem 4 (Prophet Inequalities for Sum of k Choices).
The following strategy ensures that the gambler obtains
at least γk fraction of payoff of the prophet in expecta-
tion. 9

• Find the threshold τ such that
∑

i Pr[Vi > τ ] = k.
This can be done by doing a binary search on τ .

• Use a γk-conservative magician with k magic
wands. Upon seeing each Vi, create a box and
write qi = Pr[Vi > τ ] on the box and present
it to the magician. If the magician chooses to open
the box and also Vi > τ , then select Vi and break
the magician’s wand, otherwise skip Vi.

Proof: First, we compute an upper bound on the

expected payoff of the prophet. Let qi be the probability

that the prophet chooses Vi (i.e. the probability that

Vi is among the k highest draws). Now let ui(qi)
denote the maximum possible contribution of the ran-

dom variable Vi to the expected payoff of the prophet

8A gambler with stopping rules τ1, · · · , τk works as follows. Upon
seeing Vi, he selects it iff Vi ≥ τj+1 where j is the number of random
draws selected so far.

9To simplify the exposition we assume that the distribution of each
of Vi does not have any point mass. Our theorem holds with slight
modifications if we allow point masses.



if Vi is selected with probability qi. Note that ui(qi)
is equal to the expected value of Vi conditioned on

being above the 1 − qi quantile. Let Fi(·) and fi(·)
denote the CDF and PDF of Vi. ui(qi) can be defined

as ui(qi) =
∫∞
F−1

i (1−qi)
vfi(v)dv. By changing the

integration variable and applying the chain rule we get

ui(qi) =
∫ qi
0

F−1
i (1 − q)dq. Observe that d

dqi
ui(qi) =

F−1
i (1 − qi) is a non-increasing function so ui(qi) is

a concave function. Furthermore,
∑

i qi ≤ k because

the prophet cannot choose more than k random draws.

So the optimal objective value of the following convex

program is an upper bound on the payoff of the prophet:

maximize:
∑
i

ui(qi) (U )

∑
i

qi ≤ k (τ )

∀i ∈ [n] : qi ≥ 0 (μi)

Now let L(q, τ, μ) = −∑
i ui(qi) + τ(

∑
i qi −

k) −∑
i μiqi be the Lagrangian. By KKT stationarity

condition, at the optimal assignment, it must be that
∂
∂qi

L(q, τ, μ) = 0. On the other hand, ∂
∂qi

L(q, τ, μ) =

−F−1
i (1− qi) + τ −μi. Assuming that qi > 0, then by

complementary slackness μi = 0, which then implies

that qi = 1− Fi(τ), so qi = Pr[Vi > τ ]. Furthermore,

it is easy to show that the first constraint must be tight,

which implies that
∑

i Pr[Vi > τ ] = k. Observe that

the contribution of each Vi to the objective value of the

convex program is exactly E[Vi|Vi > τ ]Pr[Vi > τ ].
Now, by using a γk-conservative magician we can

ensure that each box is opened with probability at least

γk which implies the contribution of each Vi to the

expected payoff of the gambler is E[Vi|Vi > τ ]Pr[Vi >
τ ]γk which proves that the expected payoff of the

gambler is at least γk fraction of optimal objective value

of the convex program, which was itself and upper

bound on the expected payoff of the prophet.

4. THE TWO GENERIC MECHANISMS

In this section, we present the details of the ap-

proach that was outlined in section 2. The model and

assumptions were explained in that section. We start by

proving that an (approximately) optimal mechanism for

the relaxed problem can always be constructed from n
(approximately) optimal primary mechanisms.

Theorem 5. Suppose for each buyer i, we have an α-
approximate primary mechanism Mi and a matching
concave primary benchmark Ri, as defined in Def. 1.
Consider the mechanism M which simply uses Mi(q̄i)
independently for each buyer i, where q̄i is the optimal
assignment of the following convex program. Then M
is a feasible mechanism for the relaxed problem and its

expected object value is at least an α-fraction of the
optimal objective value of the convex program, which
is itself an upper bound on the expected objective value
of the optimal mechanism.

maximize:
∑
i

Ri(q̄i) (CPR)

∀j ∈ [m] :
∑
i

q̄ij ≤ kj

∀i ∈ [n], ∀j ∈ [m] : q̄ij ∈ [0, 1]

Proof: Let M∗ be any optimal mechanism for the

relaxed problem. For each buyer i, we construct a single

buyer mechanism M∗
i as follows. M∗

i creates n − 1
dummy buyers whose types are randomly drawn from

D−i. It then runs M∗ on buyers i and the n− 1 other

dummy buyers. Note that buyer i cannot tell the differ-

ent between M∗
i and the original M∗ because buyers

types are distributed independently. Observe that the

contribution of buyer i to the expected objective value

of M∗ is the same as her contribution to the expected

objective value of M∗
i . So the mechanism that runs

M∗
1, · · · ,M∗

n independently, has the same expected

objective value and the same expected probabilities

of allocation as M∗. Now let q∗ij = Et∼D[XM∗
ij (t)]

be the expected probability that M∗ allocates a copy

of item j to buyer i. Observe that q∗ij is a feasible

assignment for the convex program. Furthermore, the

expected object value of M∗ is equal to the sum of

the expected objective values ofM∗
1, · · · ,M∗

n which is

upper bounded by
∑

i Ri(q
∗
i ). So the optimal objective

value of the convex program may only be higher than

the expected objective value of M∗. Now observe that

the expected objective value of the mechanism M is at

least
∑

i α · Ri(q̄i) where q̄i is the optimal assignment

for the convex program. So the expected objective value

of M is at least α-fraction of the expected objective

value of M∗.

Note that in Theorem 5, Ri are concave functions

by definition. However, we shall show that the optimal

primary benchmarks are also concave.

Theorem 6. The optimal primary benchmarks are al-
ways concave.

Proof: We prove this for an arbitrary buyer i. Let

Mi and Ri denote the optimal primary mechanism

and the optimal primary benchmark for buyer i. To

show that Ri is concave, it is enough to show that for

any q, q′ ∈ [0, 1]m and any α ∈ [0, 1], the following

inequality holds: Ri(αq + (1 − α)q′) ≥ αRi(q) +
(1 − α)Ri(q

′). Consider the single buyer mechanism

M′′ that works as follows: M′′ uses Mi(q) with

probability α and uses Mi(q
′) with probability 1− α.

Because we assumed Mi is a convex space,M′′ ∈Mi.

Observe that by linearly of expectation, the expected



probabilities of allocation for M′′ is no more than

αq+(1−α)q′ and the expected objective value ofM′′

is αRi(q) + (1 − α)Ri(q
′). So the expected objective

value of the optimal primary mechanism, subject to

the upper bound of αq + (1 − α)q′ on the expected

probabilities of allocation, may only be higher. That

implies Ri(αq + (1− α)q′) ≥ αRi(q) + (1− α)Ri(q
′)

which proves our claim.

Next, we present a detailed description of the two

generic mechanisms that were outlined in section 2.

Throughout the rest of this section, we assume that

for each buyer i, we have an α-approximate primary

mechanism Mi and a corresponding concave primary

benchmark Ri. First, we present the pre-rounding mech-

anism.

Mechanism 1 (γ-Pre-Rounding).
(I) Solve the convex program of (CPR) and let q̄ij

denote an optimal assignment for it.
(II) For each item j ∈ 1 · · ·m: create an instance

of γ-conservative magician (see Alg. 1) with
kj magic wands. We will use these magicians
through the rest of the mechanism. Note that γ
is a parameter that is given.

(III) For each buyer i ∈ 1 · · ·n:
a) For each j ∈ 1 · · ·m: write q̄ij on a box and

present it to the jth magician. Let Yij denote
the indicator random variable which is 1 iff the
magician opens the box. Set q̄′ij ← q̄ijYij .

b) Run the mechanism Mi(q̄
′
i) on buyer i and

use its outcome as the final outcome for buyer
i. Furthermore, let Xi1, . . . , Xim denote the
indicator random variables for the allocation
of Mi(q̄

′
i).

c) For each j ∈ 1 · · ·m: if Xij = 1, then break
the wand of the jth magician.

In order for Mech. 1 to retain at least a γ-fraction

of the the expected objective value of each Mi(q̄i), we

have to make further technical assumptions. We show

that it is enough to assume that each Ri has a budget-

balanced and cross monotonic cost sharing scheme.

Next we define this formally.

Definition 5 (Budget Balanced Cross Monotonic Cost

Sharing Scheme). For any subset of items S ⊂ [m] and
any vector q̄ ∈ [0, 1]m, let q̄[S] denote the vector whose
jth component is q̄j if j ∈ S and is 0 otherwise. A
primary benchmark function Ri has a budget balanced
cross monotonic cost sharing scheme iff there exist a
cost share function ξ : [m] × {0, 1}m × [0, 1]m → R+

with the following two properties. ξ must be budget
balances which means for all q̄i ∈ [0, 1]m and S ⊂ [m],∑

j∈S ξ(j, S, q̄i) = Ri(q̄i[S]). Also ξ must be cross
monotonic which means for all q̄i ∈ [0, 1]m, j ∈ [m]

and S, T ⊂ [m], ξ(j, S, q̄i) ≥ ξ(j, S ∪ T, q̄i).

The above requirement on Ri can be interpreted

in the following manner. Roughly it means that the

contribution of each item j to the expected objective

value of the primary mechanism for buyer i should not

decrease when items other than j are being precluded

from buyer i. The following are some examples of

environments where this assumption holds. (i) When

Ri(q̄i[S]) is a submodular function of S. (ii) For wel-

fare objective, assuming that the buyers’ valuations are

submodular. (iii) For revenue maximization when the

buyers’ valuations are submodular and M is restricted

to mechanisms that can be interpreted as buyer specific

item pricing.

Theorem 7 (γ-Pre-Rounding). Suppose for each buyer i
we have an α-approximate primary mechanismMi and
a corresponding concave primary benchmark Ri that
has a budget balanced cross monotonic cost sharing
scheme. Then, for any γ ∈ [0, γk], the γ-pre-rounding
mechanism (Mech. 1) is a feasible mechanism in M.
Furthermore, it is a γ · α-approximation of the optimal
mechanism in M. Note that the resulting mechanism is
dominant strategy incentive compatible (DSIC).

Remark 1. The γ-pre-rounding mechanism assumes
no control and no prior information about the order
in which buyers are visited. The order specified in the
mechanism is arbitrary and could be replaced by any
other ordering which may be unknown in advance. In
particular, this mechanism can be adopted to online
settings where buyers are served in an unknown order.

Next, we present the post-rounding mechanism.

Mechanism 2 (γ-Post-Rounding).
(I) Solve the convex program of (CPR) and let q̄ij

denote an optimal assignment for it.
(II) For each buyer i ∈ 1 · · ·n: run the corresponding

primary mechanism Mi(q̄i) on buyer i and let
Xi1, . . . , Xim and Pi denote the random vari-
ables for the allocation and the payment of Mi.
Furthermore, let q̂ij be the actual marginal prob-
ability of allocating item j to buyer i by Mi(q̄i).
Note that q̂ij ≤ q̄ij .

(III) For each item type j ∈ 1 · · ·m:
a) Create a new instance of the γ-conservative

magician (see Alg. 1) with kj magic wands.
This is the jth magician.

b) For each i ∈ 1 · · ·n: create a box corre-
sponding to Xij and write q̂ij on the box and
present it to the jth magician. Let Yij denote
the indicator random variable which is 1 iff
the magician chooses to open the box. Set
X ′

ij ← XijYij . If X ′
ij = 1 then break the



magician’s wand.
(IV) For each buyer i ∈ 1 · · ·n: charge buyer i a

payment of P ′
i ← γPi and for each j ∈ 1 · · ·m,

allocate a copy of item j to buyer i iff X ′
ij = 1.

In order for Mech. 2 to be applicable, we need

to make further technical assumptions. The following

assumptions are sufficient to ensure that Mech. 2 is

truthful and retains at least a γ-fraction of the expected

objective value of each Mi(q̄i).

• We must be able to compute the actual expected

probabilities of allocation for each Mi(q̄i). Note

that q̄i is only an upper bound on these probabili-

ties.

• The objective function Wi(ti, xi, pi), must be sub-

modular in xi and linear in payment.

• The space of mechanism M should only be re-

stricted to Bayesian incentive compatible mecha-

nisms and may not be restricted to any stronger

concept of truthfulness.

• The valuations of each buyer should be in the form

of a weighted rank function of some matroid.

Note that the above assumptions are not the only

possible set of assumptions that are sufficient for the

applicability of Mech. 2. Next we define the last as-

sumption formally.

Definition 6 (Valuations as Matroid Weighted Rank

Functions). Valuations of a buyer for bundles of items
can be represented as a weighted rank function of a
matroid if there is a matroid whose ground set is the
set of items, such that for any bundle S of items:

• If S is an independent set of the matroid, then the
valuation of the buyer for S is just the sum of her
valuations for each item in S.

• If S is not an independent set, then the valuation
of the buyer for S is equal to her valuation of
an independent subset S′ ⊂ S with the maximum
valuation.

In particular, additive valuations with capacities, unit
demand valuations, etc. can be represented as matroid
weighted rank functions 10.

Theorem 8 (γ-Post-Rounding). Suppose for each buyer
i we have an α-approximate primary mechanism Mi

and a corresponding concave primary benchmark Ri.
Suppose all of the assumptions mentioned earlier hold.
Then, for any γ ∈ [0, γk], the γ-post-rounding mech-
anism (Mech. 2) is a feasible mechanism in M. Fur-
thermore, it is a γ · α-approximation of the optimal
mechanism in M. Note that the resulting mechanism
is only Bayesian incentive compatible (BIC).

10note that budget constraints are not part of the valuations.

5. AN EXAMPLE PRIMARY MECHANISM

In this section, we present an example of a primary

mechanism for the following setting. We consider a

buyer with correlated and additive valuations with a

capacity and a hard budget constraint. We assume that

the size of the type space of the buyer is polynomially

bounded. Since a primary mechanism only interacts

with a single buyer, we shall drop the subscript i. For

each possible type t of the buyer, let vtj denote her

valuation for item j. Also let f(t) denote the probability

that the buyer’s type is t. Furthermore, suppose that the

buyer has a total budget of B and is interested in at most

C items. We assume that the only private information

of the buyer is her type and everything else is publicly

known. Note that this is exactly the setting considered in

[3]. They present a 1
4 -approximate BIC mechanism for

maximizing revenue. Next, we present a truthful optimal

primary mechanism for maximizing revenue, which can

be converted to a γk-approximate BIC mechanism for

multiple buyers, using the γ-post-rounding. Remember

that γk is at least 1
2 and approaches 1 as k increases.

Consider the following linear program in which xtj

is the variable corresponding to the probability of al-

locating item j when the buyer has reported type t
and pt is the variable for the payment for type t. The

optimal objective value of this LP is an upper bound on

the revenue of the optimal primary mechanism when

restricted to allocate each item j with probability at

most q̄j :

maximize:
∑
t

f(t)pt (LPrev)

∀j ∈ [m] :
∑
t

f(t)xtj ≤ q̄j

∀t ∈ T :
∑
j

xtj ≤ C

∀t, t′ ∈ T :
∑
j

vtjxtj − pt ≥
∑
j

vtjxt′j − pt′

∀t ∈ T, ∀j ∈ [m] : xtj ∈ [0, 1]

∀t ∈ T : pt ∈ [0, B]

We construct the optimal primary mechanism as

follows.

Mechanism 3.
• Define the optimal primary benchmark R(q̄) to

be the optimal objective value of (LPrev) as a
function of q̄ = (q̄1, · · · , q̄m).

• Given q̄1, · · · , q̄m, solve the linear program of
(LPrev) to compute xtj and pt.

• If the buyer reports her type as t then charge
her a payment of pt and allocate each item j



with probability xtj as explained next. Use the
dependent randomize rounding algorithm of [10]
to round each xtj to either 0 or 1 such that if Xj

is the result of rounding the xtj then E[Xj ] = xtj

and such that
∑

j Xj ≤ C. Then, for each j
allocate a copy of item j to the buyer iff Xj = 1.

Theorem 9. The primary mechanism Mech. 3 is a
truthful optimal primary mechanism for maximizing
revenue and satisfies all the requirements of γ-post-
rounding.

Proof: The proof of truthfulness and optimality of

Mech. 3 trivially follows from the (LPrev). So, we

only focus on proving that this mechanism satisfies

the requirements of Theorem 8. First, observe that the

benchmark function, R(q̄), is concave (this follows by

applying Lem. 1). Second, observe that the valuations of

the buyer can be represented as a weighted rank function

of a uniform matroid of rank C. Third, notice that

given q̄1, · · · , q̄m, we can compute the exact marginal

probabilities of allocation, i.e. q̂1, · · · , q̂m as follows:

q̂j =
∑

t f(t)xtj . So the mechanism Mech. 3 and

its associated benchmark satisfy the requirements of

Theorem 8 for γ-post-rounding.

Lemma 1. Consider any convex program of the fol-
lowing form, in which u(·) is a concave function, gj(·)
are convex functions, and X is a convex set. Let R(q̄)
denote the optimal objective value of this program as a
function of q̄ = (q̄1, · · · , q̄m). Then R(q̄) is concave.

maximize: u(x) (CPu)

∀j : gj(x) ≤ q̄j

x ∈ X

Remark 2. Observe that if we replace the objective
function of (LPrev) with

∑
t,j f(t)vtjxtj we get a

truthful optimal primary mechanism for maximizing
welfare instead of revenue, which can be converted to
a γk-approximate BIC mechanism for multiple buyers
and for maximizing welfare.

6. CONCLUSION

In this paper, for Bayesian combinatorial auctions, we

presented an approximate reduction from n-buyer mech-

anisms to 1-buyer mechanisms. This shows that the

inherent difficulty of designing Bayesian mechanisms

in multidimensional settings does not stem from the

problem of making coordinated decisions for all buyer,

but instead it stems from the difficulty of aligning the

behavior of the mechanism with the incentives of each

individual buyer, even in the absence of other buyers.
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